मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table LCM GCD p(x) q(x) (x4 – y4)(x4 + x2y2 + y2) (x2 – y2) (x4 – y4)(x2 + y2 – xy) - Mathematics

Advertisements
Advertisements

प्रश्न

Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table

LCM GCD p(x) q(x)
(x4 –  y4)(x4 + x2y2 + y2 (x2 –  y2)   (x4 –  y4)(x2 + y2 –  xy)
बेरीज

उत्तर

L.C.M. (x2 + y2)(x4 + x2y2 + y4)

(x2 + y2)[(x2 + y2)2-(xy)2]

(x2 + y2) (x2 + y2 + xy) (x2 + y2 – xy)

G.C.D. = x2 – y2

(x + y)(x – y)

q(x) = (x4 – y4) (x2 + y2 – xy)

= [(x2)2 – (y2)2](x2 + y2 – xy)

= (x2 + y2) (x2 – y2) (x2 + y2 – xy)

(x2 + y2) (x + y) (x – y) (x2 + y2 – xy)

P(x) = x2 + y2 + xy

p(x) = `("L""C""M" xx "G""C""D")/("q"(x))`

= `((x^2 + y^2)(x^2 + y^2 + xy)(x^2 + y^2 - xy)(x + y)(x - y))/((x^2 + y^2)(x + y)(x - y)(x^2 + y^2 - xy))`

p(x) = x2 + y2 + xy

shaalaa.com
GCD and LCM of Polynomials
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Algebra - Exercise 3.3 [पृष्ठ ९८]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 3 Algebra
Exercise 3.3 | Q 4. (ii) | पृष्ठ ९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×