Advertisements
Advertisements
प्रश्न
Find the least common multiple of xy(k2 + 1) + k(x2 + y2) and xy(k2 – 1) + k(x2 – y2)
उत्तर
xy(k2 + 1) + k(x2 + y2) ...(1)
xy(k2 – 1) + k(x2 – y2) ...(2)
(1) ⇒ xyk2 + xy + kx2 + ky2
(2) ⇒ xyk2 – xy + kx2 – ky2
(1) ⇒ yk (xk + y) + x (xk + y)
= (xk + y) (x + yk)
(2) ⇒ yk (xk – y) + x (xk – y)
= (x + yk) (xk – y)
∴ L.C.M. : (x + yk) (xk + y) (xk – y)
= (x + yk) (x2k2 – y2)
APPEARS IN
संबंधित प्रश्न
Find the G.C.D. of the given polynomials
3x4 + 6x3 – 12x2 – 24x, 4x4 + 14x3 + 8x2 – 8x
Find the G.C.D. of the given polynomials
3x3 + 3x2 + 3x + 3, 6x3 + 12x2 + 6x + 12
Find the L.C.M. of the given expressions
4x2y, 8x3y2
Find the L.C.M. of the given expressions
– 9a3b2, 12a2b2c
Find the L.C.M. of the given expressions
(2x2 – 3xy)2, (4x – 6y)3, (8x3 – 27y3)
Find the LCM pair of the following polynomials
x4 – 27a3x, (x – 3a)2 whose GCD is (x – 3a)
Find the GCD pair of the following polynomials
12(x4 – x3), 8(x4 – 3x3 + 2x2) whose LCM is 24x3 (x – 1)(x – 2)
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
(x4 – y4)(x4 + x2y2 + y2) | (x2 – y2) | (x4 – y4)(x2 + y2 – xy) |
If (x – 6) is the HCF of x2 – 2x – 24 and x2 – kx – 6 then the value of k is
Find the GCD of the following by division algorithm
2x4 + 13x3 + 27x2 + 23x + 7, x3 + 3x2 + 3x + 1, x2 + 2x + 1