मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Find the G.C.D. of the given polynomials 3x4 + 6x3 – 12x2 – 24x, 4x4 + 14x3 + 8x2 – 8x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the G.C.D. of the given polynomials

3x4 + 6x3 – 12x2 – 24x, 4x4 + 14x3 + 8x2 – 8x

बेरीज

उत्तर

p(x) = 3x4 + 6x3 – 12x2 – 24x

= 3x (x3 + 2x2 – 4x – 8)

g(x) = 4x4 + 14x3 + 8x2 – 8x

= 2x (2x3 + 7x2 + 4x – 4)

G.C.D. of 3x and 2x = x

Now g(x) is divide by p(x) we get


3x2 + 12x + 12 = 3 (x2 + 4x + 4)

Now dividing p(x) = x3 + 2x2 – 4x – 8

by the new remainder ...(leaving the constant)

x2 + 4x + 4


G.C.D. = x(x2 + 4x + 4) ...[Note x is common for p(x) and g(x)]

shaalaa.com
GCD and LCM of Polynomials
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Algebra - Exercise 3.2 [पृष्ठ ९६]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 3 Algebra
Exercise 3.2 | Q 1. (iii) | पृष्ठ ९६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×