Advertisements
Advertisements
प्रश्न
Find the median of 3.6, 9.4, 3.8, 5.6, 6.5, 8.9, 2.7, 10.8, 15.6, 1.9 and 7.6.
उत्तर
3.6, 9.4, 3.8, 5.6, 6.5, 8.9, 2.7, 10.8, 15.6, 1.9 and 7.6.
Arranging in ascending order: 1.9, 2.7, 3.6, 3.8, 5.6, 6.5, 7.6, 8.9, 9.4, 10.8, 15.6
Here, number of terms = 11 which is odd
∴ Median = `("n"+1)/2=(11+1)/2` = 6th term
= 6th term = 6.5
Hence, median = 6.5
APPEARS IN
संबंधित प्रश्न
Marks obtained (in mathematics) by 9 student are given below:
60, 67, 52, 76, 50, 51, 74, 45 and 56
if marks of each student be increased by 4; what will be the new value of arithmetic mean.
The following table gives the weekly wages of workers in a factory.
Weekly wages (Rs) | No. of workers |
50 – 55 | 5 |
55 – 60 | 20 |
60 – 65 | 10 |
65 – 70 | 10 |
70 – 75 | 9 |
75 – 80 | 6 |
80 – 85 | 12 |
85 – 90 | 8 |
Calculate the mean by using:
Short-cut method
Using step-deviation method, calculate the mean marks of the following distribution.
C.I. | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Find the median and mode for the set of numbers:
2, 2, 3, 5, 5, 5, 6, 8 and 9
find the mean for the following frequency distribution:
C.I | 0-50 | 50-100 | 100-150 | 150-200 | 200-250 | 250-300 |
Freq | 4 | 8 | 16 | 13 | 6 | 3 |
The mean of the following distribution in 52 and the frequency of class interval 30-40 'f' find f
C.I | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
freq | 5 | 3 | f | 7 | 2 | 6 | 13 |
Find the mode of the following frequency distribution:
Pocket money per week in Rs | 25 | 50 | 75 | 100 | 125 | 150 |
No. of students | 4 | 7 | 13 | 18 | 6 | 2 |
The following data have been arranged in ascending order. If their median is 63, find the value of x.
34, 37, 53, 55, x, x + 2, 77, 83, 89 and 100.
Find the median of 25, 16, 15, 10, 8, 30
The median class for the given distribution is:
Class Interval | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 |
Cumulative Frequency | 2 | 6 | 11 | 18 |