Advertisements
Advertisements
प्रश्न
Find the mode of the following frequency distribution:
Class: | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Frequency: | 25 | 30 | 45 | 42 | 35 |
उत्तर
Since, class 40 – 50 have highest frequency.
So, modal class is 40 – 50.
Lower limit (l) of modal class = 40
Class size (h) = 10
Frequency of modal class (f1) = 45
Frequency of class proceeding to modal class (f0) = 30
Frequency of class succeeding to modal class (f2) = 42
Mode = `l + ((f_1 - f_0)/(2f_1 - f_0 - f_2)) xx h`
= `40 + ((45 - 30)/(90 - 30 - 42)) xx 10`
= `40 + 150/18`
= `(720 + 150)/18`
= `870/18`
= 48.33
संबंधित प्रश्न
Heights of students of class X are givee in the flowing frequency distribution
Height (in cm) | 150 – 155 | 155 – 160 | 160 – 165 | 165 – 170 | 170 - 175 |
Number of students | 15 | 8 | 20 | 12 | 5 |
Find the modal height.
Also, find the mean height. Compared and interpret the two measures of central tendency.
Compute the mode from the following series:
Size | 45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 | 95 – 105 | 105 - 115 |
Frequency | 7 | 12 | 17 | 30 | 32 | 6 | 10 |
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
Name the modal class.
Mode is the ______.
If xi's are the midpoints of the class intervals of grouped data, fi's are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i-barx)` is equal to ______.
Which of the following is not a measure of central tendency?
If mode of the following frequency distribution is 55, then find the value of x.
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 10 | 7 | x | 15 | 10 | 12 |
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.