Advertisements
Advertisements
प्रश्न
Find the point on y-axis whose distances from the points A (6, 7) and B (4, -3) are in the ratio 1: 2.
उत्तर १
Let the required point on y-axis be P (0, y).
PA = `sqrt((0 - 6)^2 + (y - 7)^2)`
= `sqrt(36 + y^2 + 49 - 14y)`
= `sqrt(y^2 - 14y + 85)`
PB = `sqrt((0 -4)^2 + (y + 3)^2)`
= `sqrt(16 + y^2 + 9 + 6y)`
= `sqrt(y^2 + 6y + 25)`
From the given information, we have:
`"PA"/"PB" = (1)/(2)`
`"PA"^2/"PB"^2 = (1)/(4)`
`(y^2 - 14y + 85)/(y^2 + 6y + 25) = (1)/(4)`
4y2 - 56y + 340
= y2 + 6y + 25
3y2 - 62y + 315
= 0
y = `(62 ± sqrt(3844 - 3780))/(6)`
y = `(62 ± 8)/(6)`
y = `9,(35)/(3)`
Thus, the required points on y-axis are (0, 9) and `(0,(35)/(3))`.
उत्तर २
Let the required point on y-axis be P (0, y).
PA = `sqrt((0 - 6)^2 + (y - 7)^2)`
= `sqrt(36 + y^2 + 49 - 14y)`
= `sqrt(y^2 - 14y + 85)`
PB = `sqrt((0 -4)^2 + (y + 3)^2)`
= `sqrt(16 + y^2 + 9 + 6y)`
= `sqrt(y^2 + 6y + 25)`
From the given information, we have:
`"PA"/"PB" = (1)/(2)`
`"PA"^2/"PB"^2 = (1)/(4)`
`(y^2 - 14y + 85)/(y^2 + 6y + 25) = (1)/(4)`
4y2 - 56y + 340 = y2 + 6y + 25
3y2 - 62y + 315 = 0
y = `(62 ± sqrt(3844 - 3780))/(6)`
y = `(62 ± 8)/(6)`
y = `9,(35)/(3)`
Thus, the required points on y-axis are (0, 9) and `(0,(35)/(3))`.
APPEARS IN
संबंधित प्रश्न
Show that the points (1, – 1), (5, 2) and (9, 5) are collinear.
Find the distance between the following pairs of points:
(−5, 7), (−1, 3)
If Q (0, 1) is equidistant from P (5, − 3) and R (x, 6), find the values of x. Also find the distance QR and PR.
ABC is a triangle and G(4, 3) is the centroid of the triangle. If A = (1, 3), B = (4, b) and C = (a, 1), find ‘a’ and ‘b’. Find the length of side BC.
Using the distance formula, show that the given points are collinear:
(-2, 5), (0,1) and (2, -3)
If P (x , y ) is equidistant from the points A (7,1) and B (3,5) find the relation between x and y
Show that the ▢PQRS formed by P(2, 1), Q(–1, 3), R(–5, –3) and S(–2, –5) is a rectangle.
A line segment of length 10 units has one end at A (-4 , 3). If the ordinate of te othyer end B is 9 , find the abscissa of this end.
Prove that the following set of point is collinear :
(5 , 1),(3 , 2),(1 , 3)
Find the coordinate of O , the centre of a circle passing through A (8 , 12) , B (11 , 3), and C (0 , 14). Also , find its radius.
ABC is an equilateral triangle . If the coordinates of A and B are (1 , 1) and (- 1 , -1) , find the coordinates of C.
In what ratio does the point P(−4, y) divides the line segment joining the points A(−6, 10) and B(3, −8)? Hence find the value of y.
Find the coordinates of the points on the y-axis, which are at a distance of 10 units from the point (-8, 4).
What point on the x-axis is equidistant from the points (7, 6) and (-3, 4)?
A point P lies on the x-axis and another point Q lies on the y-axis.
If the abscissa of point P is -12 and the ordinate of point Q is -16; calculate the length of line segment PQ.
Show that the points A (5, 6), B (1, 5), C (2, 1) and D (6, 2) are the vertices of a square ABCD.
Show that the points (2, 0), (– 2, 0) and (0, 2) are vertices of a triangle. State the type of triangle with reason
Seg OA is the radius of a circle with centre O. The coordinates of point A is (0, 2) then decide whether the point B(1, 2) is on the circle?
If the distance between the points (4, P) and (1, 0) is 5, then the value of p is ______.
If (a, b) is the mid-point of the line segment joining the points A(10, –6) and B(k, 4) and a – 2b = 18, find the value of k and the distance AB.