Advertisements
Advertisements
प्रश्न
Find the value of a, if x – 2 is a factor of 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8.
उत्तर
f(x) = 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8
x – 2 = 0 `\implies` x = 2
Since, x – 2 is a factor of f(x), remainder = 0.
2(2)5 – 6(2)4 – 2a(2)3 + 6a(2)2 + 4a(2) + 8 = 0
64 – 96 – 16a + 24a + 8a + 8 = 0
–24 + 16a = 0
16a = 24
a = 1.5
APPEARS IN
संबंधित प्रश्न
Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Use factor theorem to factorise the following polynominals completely.
x3 + 2x2 – 5x – 6
If (2x + 1) is a factor of 6x3 + 5x2 + ax – 2 find the value of a.
If (2x – 3) is a factor of 6x2 + x + a, find the value of a. With this value of a, factorise the given expression.
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
If p(a) = 0 then (x – a) is a ___________ of p(x)
Is (x – 2) a factor of x3 – 4x2 – 11x + 30?