Advertisements
Advertisements
प्रश्न
Find the value of ‘m’, if mx3 + 2x2 – 3 and x2 – mx + 4 leave the same remainder when each is divided by x – 2.
उत्तर
Let f(x) = mx3 + 2x2 – 3
g(x) = x2 – mx + 4
It is given that f(x) and g(x) leave the same remainder when divided by (x – 2).
Therefore, we have:
f(2) = g(2)
m(2)3 + 2(2)2 – 3 = (2)2 – m(2) + 4
8m + 8 – 3 = 4 – 2m + 4
10m = 3
m = `3/10 `
APPEARS IN
संबंधित प्रश्न
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
If x51 + 51 is divided by x + 1, the remainder is ______.
By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: x4 + 1; x – 1
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.