Advertisements
Advertisements
प्रश्न
Find the volume of a cube whose diagonals is `sqrt(48)"cm"`.
उत्तर
Given that:
Diagonal of a cube = `sqrt(48)"cm"`
i.e., `sqrt(3) xx "l" = sqrt(48)` ...[∵ Diagonal of cube = `sqrt(3) xx "l"]`
l = `sqrt(48)/sqrt(3)`
l = `sqrt(48/3)`
= `sqrt(16)`
= 4cm
∴ Side (l) = 4cm
Now,
Volume of cube
= l3
= l x l x l
= 4 x 4 x 4
= 16 x 4
= 64cm3
∴ Volume of Cube = 64cm3.
APPEARS IN
संबंधित प्रश्न
What will happen to the volume of a cube, if its edge is halved ?
A beam 5 m long and 40 cm wide contains 0.6 cubic metre of wood. How thick is the beam?
Find the volume of a cube whose surface area is 96 cm2.
The internal length, breadth, and height of a box are 30 cm, 24 cm, and 15 cm. Find the largest number of cubes which can be placed inside this box if the edge of each cube is
(i) 3 cm (ii) 4 cm (iii) 5 cm
The dimensions of a rectangular box are in the ratio 4: 2 : 3. The difference between the cost of covering it with paper at Rs. 12 per m2 and with paper at the rate of 13.50 per m2 is Rs. 1,248. Find the dimensions of the box.
A solid cube of side 12 cm is cut into 8 identical cubes. What will be the side of the new cube? Also, find the ratio between the surface area of the original cube and the total surface area of all the small cubes formed.
How many bricks will be required for constructing a wall which is 16 m long, 3 m high, and 22.5 cm thick, if each brick measures 25 cm x 11.25 cm x 6 cm?
The square on the diagonal of a cube has an area of 441 cm2. Find the length of the side and total surface area of the cube.
A cubical container of side 6.5 m is to be painted on the entire outer surface. Find the area to be painted and the total cost of painting it at the rate of ₹ 24 per m2
A cube of side 4 cm is cut into 1 cm cubes. What is the ratio of the surface areas of the original cubes and cut-out cubes?