Advertisements
Advertisements
प्रश्न
Find whether the following equation have real roots. If real roots exist, find them.
8x2 + 2x – 3 = 0
उत्तर
Given equation is 8x2 + 2x – 3 = 0
On comparing with ax2 + bx + c = 0, we get
a = 8, b = 2 and c = – 3
∴ Discriminant, D = b2 – 4ac
= (2)2 – 4(8)(– 3)
= 4 + 96
= 100 > 0
Therefore, the equation 8x2 + 2x – 3 = 0 has two distinct real roots because we know that,
If the equation ax2 + bx – c = 0 has discriminant greater than zero, then it has two distinct real roots.
Roots, `x = (-b +- sqrt(D))/(2a)`
= `(-2 +- sqrt(100))/16`
= `(-2 +- 10)/16`
= `(-2 + 10)/16, (-1 - 10)/16`
= `8/16, -12/16`
= `1/2, - 3/4`
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the quadratic equation 9x2 - 3kx + k = 0 has equal roots.
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
`3x^2 - 4sqrt3x + 4 = 0`
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 + 2(k + 3)x + (k + 8) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(2k + 1)x2 + 2(k + 3)x + (k + 5) = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
x2 - kx + 9 = 0
Find the value of k for which the given equation has real roots:
9x2 + 3kx + 4 = 0.
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
2x2 - (3k + 1)x - k + 7 = 0.
The quadratic equation whose one rational root is `3 + sqrt2` is
The roots of the equation (b – c) x2 + (c – a) x + (a – b) = 0 are equal, then:
State whether the following quadratic equation have two distinct real roots. Justify your answer.
(x + 1)(x – 2) + x = 0