Advertisements
Advertisements
प्रश्न
Find without division, the remainder in the following:
5x2 - 9x + 4 is divided by (x - 2)
उत्तर
5x2 - 9x + 4 is divided by (x - 2)
Putting x - 2 = 0, we get : x = 2
Substituting this value of x in the equation, we get 5 × 2 × 2 - 9 × 2 + 4 = 20 - 18 + 4 = 6
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 2
When x3 + 3x2 – mx + 4 is divided by x – 2, the remainder is m + 3. Find the value of m.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
If ( x31 + 31) is divided by (x + 1) then find the remainder.
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x + 3
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1