Advertisements
Advertisements
प्रश्न
Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]
उत्तर
We have:
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]
`((-1)/2)^(-11)=((-1)/2)^(-2x+1)`
-11 = -2x + 1
-12 = -2x
6 = x
x = 6
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
Simplify:
Simplify:
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
6−1
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a negative exponent:
Find x, if
Find the value of (2−1 × 4−1) ÷2−2.
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.