Advertisements
Advertisements
प्रश्न
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
उत्तर
यदि g(x) = x + 1 दिए गए बहुपद p(x) का एक गुणनखंड है, तो p(−1) शून्य होगा।
p(x) = 2x3 + x2 − 2x − 1
p(−1) = 2(−1)3 + (−1)2 − 2(−1) − 1
= 2(−1) + 1 + 2 − 1
= 0
अतः, g(x) = x + 1 दिए गए बहुपद का एक गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
जाँच कीजिए कि p(x), g(x) का एक गुणज है या नहीं :
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
गुणनखंड कीजिए :
6x2 + 7x – 3
गुणनखंड कीजिए :
84 – 2r – 2r2
गुणनखंड कीजिए :
x3 – 6x2 + 11x – 6
गुणनखंड कीजिए :
x3 + x2 – 4x – 4
निम्नलिखित के गुणनखंड कीजिए :
4x2 + 20x + 25
निम्नलिखित गुणनफल ज्ञात कीजिए :
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
गुणनखंड कीजिए :
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए जिसका क्षेत्रफल 4a2 + 4a – 3 हैं।