Advertisements
Advertisements
प्रश्न
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
उत्तर
मान लीजिए p(s) = `2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
= `2s^2 - s - 2sqrt(2)s + sqrt(2)`
= `2s - 1 (s - sqrt(2))`
तो, p(s) के शून्यक `1/2` और `sqrt(2)` हैं।
∴ शून्यों का योग = `1/2 + sqrt(2)`
= `(1 + 2sqrt(2))/2`
= `(-[-(1 + 2sqrt(2))])/2`
= `(-("का गुणांक" s))/("का गुणांक" s^2)`
और शून्य का गुणनफल = `1/2 . sqrt(2)`
= `"स्थिर पद"/("का गुणांक" s^2)`
APPEARS IN
संबंधित प्रश्न
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
4, 1
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
6x2 - 3 - 7x
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4u2 + 8u
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`sqrt2, 1/3`
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`-1/4, 1/4`
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। निम्न स्थिति में शून्यकों और गुणांकों के बीच के संबंध को भी सत्यापित कीजिए:
`2x^3 + x^2 - 5x + 2; 1/2, 1, -2`
यदि बहुपद x4 - 6x3 + 16x2 - 25x + 10 को एक अन्य बहुपद x2 - 2x + k से भाग दिया जाए और शेषफल x + a आता हो, तो k तथा a ज्ञात कीजिए।
यदि त्रिघात बहुपद x3 + ax2 + bx + c का एक शून्यक –1 है, तो अन्य दोनों शून्यकों का गुणनफल है ______।
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-3)/(2sqrt5), -1/2`
दिया है कि त्रिघात बहुपद x3− 6x2 + 3x + 10 के शून्यक a, a + b और a + 2b के रूप के हैं, जहाँ a और b, कोई वास्तविक संख्याएँ हैं। a और b के मान तथा साथ ही दिए हुए बहुपद के शून्यक ज्ञात कीजिए।