Advertisements
Advertisements
प्रश्न
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
उत्तर
मान लीजिए p(x) = `4x^2 + 5sqrt(2)x - 3`
= `4x^2 + 6sqrt(2)x - sqrt(2)x - 3`
= `2sqrt(2)x (sqrt(2)x + 3) - 1(sqrt(2)x + 3)`
= `(sqrt(2)x + 3)(2sqrt(2)x – 1)`
तो, p(x) के शून्य = `- 3/sqrt(2)` और `1/(2sqrt(2))`
∴ शून्यों का योग = `- 3/sqrt(2) + 1/(2sqrt(2))`
= `- 5/(2sqrt(2))`
= `(-5sqrt(2))/4`
= `(-("का गुणांक" x))/("का गुणांक" x^2)`
और शून्य का गुणनफल = `- 3/sqrt(2) . 1/(2sqrt(2)) = - 3/4`
= `"स्थिर पद"/("का गुणांक" x^2)`
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
t2 - 15
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
1, 1
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। निम्न स्थिति में शून्यकों और गुणांकों के बीच के संबंध को भी सत्यापित कीजिए:
`2x^3 + x^2 - 5x + 2; 1/2, 1, -2`
यदि बहुपद x4 - 6x3 + 16x2 - 25x + 10 को एक अन्य बहुपद x2 - 2x + k से भाग दिया जाए और शेषफल x + a आता हो, तो k तथा a ज्ञात कीजिए।
त्रिघात बहुपद ax3 + bx2 + cx + d का एक शून्यक 0 दिया हुआ है। अन्य दोनों शून्यकों का गुणनफल है
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
5t2 + 12t + 7
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`-2sqrt3, -9`
दिया है कि त्रिघात बहुपद x3− 6x2 + 3x + 10 के शून्यक a, a + b और a + 2b के रूप के हैं, जहाँ a और b, कोई वास्तविक संख्याएँ हैं। a और b के मान तथा साथ ही दिए हुए बहुपद के शून्यक ज्ञात कीजिए।