Advertisements
Advertisements
प्रश्न
Given below is a cumulative frequency distribution showing the marks secured by 50 students of a class:
Marks | Below 20 | Below 40 | Below 60 | Below 80 | Below 100 |
Number of students | 17 | 22 | 29 | 37 | 50 |
Form the frequency distribution table for the data.
उत्तर
Here, we observe that, 17 students have scored marks below 20 i.e., it lies between class interval 0 – 20 and 22 students have scored marks below 40, so 22 – 17 = 5 students lies in the class interval 20 – 40 continuing in the same manner, we get the complete frequency distribution table for given data.
Marks | Number of students |
0 – 20 | 17 |
20 – 40 | 22 – 17 = 5 |
40 – 60 | 29 – 22 = 7 |
60 – 80 | 37 – 29 = 8 |
80 – 100 | 50 – 37 = 13 |
APPEARS IN
संबंधित प्रश्न
During the medical check-up of 35 students of a class, their weights were recorded as follows:
Weight (in kg | Number of students |
Less than 38 | 0 |
Less than 40 | 3 |
Less than 42 | 5 |
Less than 44 | 9 |
Less than 46 | 14 |
Less than 48 | 28 |
Less than 50 | 32 |
Less than 52 | 35 |
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph verify the result by using the formula.
The marks obtained by 100 students of a class in an examination are given below:
Marks | Number of students |
0 – 5 | 2 |
5 – 10 | 5 |
10 – 15 | 6 |
15 – 20 | 8 |
20 – 25 | 10 |
25 – 30 | 25 |
30 – 35 | 20 |
35 – 40 | 18 |
40 – 45 | 4 |
45 – 50 | 2 |
Draw cumulative frequency curves by using (i) ‘less than’ series and (ii) ‘more than’ series.Hence, find the median.
Write the median class of the following distribution:
Class | 0 – 10 | 10 -20 | 20- 30 | 30- 40 | 40-50 | 50- 60 | 60- 70 |
Frequency | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
The monthly pocket money of 50 students of a class are given in the following distribution
Monthly pocket money (in Rs) | 0 - 50 | 50 – 100 | 100 – 150 | 150 -200 | 200 – 250 | 250 - 300 |
Number of Students | 2 | 7 | 8 | 30 | 12 | 1 |
Find the modal class and give class mark of the modal class.
The mode of a frequency distribution can be determined graphically from ______.
The mean of a discrete frequency distribution xi / fi, i = 1, 2, ......, n is given by
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
The arithmetic mean of the following frequency distribution is 53. Find the value of k.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 12 | 15 | 32 | k | 13 |
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | Total |
Frequency | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
If the sum of all the frequencies is 24, then the value of z is:
Variable (x) | 1 | 2 | 3 | 4 | 5 |
Frequency | z | 5 | 6 | 1 | 2 |