Advertisements
Advertisements
प्रश्न
The arithmetic mean of the following frequency distribution is 53. Find the value of k.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 12 | 15 | 32 | k | 13 |
उत्तर
Class | Frequency (fi) | xi | di = xi -50 | fidi |
0 - 20 | 12 | 10 | -40 | -480 |
20 - 40 | 15 | 30 | -20 | -300 |
40 - 60 | 32 | 50 | 0 | 0 |
60 - 80 | k | 70 | 20 | 20k |
80 - 100 | 13 | 90 | 40 | 520 |
∑fi = 72 + k | fidi = -260 + 20k |
`bar"x" = "a" + (∑"f"_"i" "d"_"i")/(∑"f"_"i")`
`53 = 50 + ((-260 + 20"k"))/(72 +" k")`
⇒ 3 = `(-260 + 20"k")/(72 +"k")`
⇒ `216 + 3"k" = -260 + 20"k"`
⇒ `476 = 17"k"`
⇒ k = 28
APPEARS IN
संबंधित प्रश्न
The heights of 50 girls of Class X of a school are recorded as follows:
Height (in cm) | 135 - 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 | 160 – 165 |
No of Students | 5 | 8 | 9 | 12 | 14 | 2 |
Draw a ‘more than type’ ogive for the above data.
The table given below shows the weekly expenditures on food of some households in a locality
Weekly expenditure (in Rs) | Number of house holds |
100 – 200 | 5 |
200- 300 | 6 |
300 – 400 | 11 |
400 – 500 | 13 |
500 – 600 | 5 |
600 – 700 | 4 |
700 – 800 | 3 |
800 – 900 | 2 |
Draw a ‘less than type ogive’ and a ‘more than type ogive’ for this distribution.
From the following data, draw the two types of cumulative frequency curves and determine the median:
Marks | Frequency |
140 – 144 | 3 |
144 – 148 | 9 |
148 – 152 | 24 |
152 – 156 | 31 |
156 – 160 | 42 |
160 – 164 | 64 |
164 – 168 | 75 |
168 – 172 | 82 |
172 – 176 | 86 |
176 – 180 | 34 |
Write the median class of the following distribution:
Class | 0 – 10 | 10 -20 | 20- 30 | 30- 40 | 40-50 | 50- 60 | 60- 70 |
Frequency | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
The following frequency distribution gives the monthly consumption of electricity of 64 consumers of locality.
Monthly consumption (in units) | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 |
Number of consumers | 4 | 5 | 13 | 20 | 14 | 8 |
Form a ‘ more than type’ cumulative frequency distribution.
Calculate the missing frequency form the following distribution, it being given that the median of the distribution is 24
Age (in years) | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Number of persons |
5 | 25 | ? | 18 | 7 |
If \[u_i = \frac{x_i - 25}{10}, \Sigma f_i u_i = 20, \Sigma f_i = 100, \text { then }\]`overlineX`
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | Total |
Frequency | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.
Class interval: | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 | 80−90 |
Frequency: | 10 | 8 | 12 | 24 | 6 | 25 | 15 |
The following is the distribution of weights (in kg) of 40 persons:
Weight (in kg) | 40 – 45 | 45 – 50 | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 |
Number of persons | 4 | 4 | 13 | 5 | 6 | 5 | 2 | 1 |
Construct a cumulative frequency distribution (of the less than type) table for the data above.