Advertisements
Advertisements
प्रश्न
How van’t Hoff factor is related to the degree of dissociation?
उत्तर
Van’t Hoff factor is related to the degree of dissociation by the formula:
`alpha=(i-1)/(n'-1)`
APPEARS IN
संबंधित प्रश्न
The substance ‘X’, when dissolved in solvent water gave molar mass corresponding to the molecular formula ‘X3’. The van’t Hoff factor (i) is _______.
(A) 3
(B) 0.33
(C) 1.3
(D) 1
Calculate the amount of benzoic acid (C6H5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
19.5 g of CH2FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.0°C. Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.
How will you convert the following in not more than two steps:
Benzoic acid to Benzaldehyde
The Van't Hoff factor (i) for a dilute aqueous solution of the strong elecrolyte barium hydroxide is (NEET) ______.
The freezing point depression constant for water is 1.86° K Kg mol-1. If 5 g Na2SO4 is dissolved in 45 g water, the depression in freezing point is 3.64°C. The Vant Hoff factor for Na2SO4 is ______.
Phenol dimerizes in benzene having van’t Hoff factor 0.54. What is the degree of association?
The van’t Hoff factor (i) accounts for ____________.
We have three aqueous solutions of NaCl labelled as ‘A’, ‘B’ and ‘C’ with concentrations 0.1 M, 0.01 M and 0.001 M, respectively. The value of van’t Hoff factor for these solutions will be in the order ______.
Van't Hoff factor I is given by expression.
What is the expected each water van't Hoff factor for and K4[F4(CN6)] when it completely dissociated in waters.
Maximum lowering of vapour pressure is observed in the case of ______.
When 9.45 g of ClCH2COOH is added to 500 mL of water, its freezing point drops by 0.5°C. The dissociation constant of ClCH2COOH is x × 10−3. The value of x is ______. (Rounded-off to the nearest integer)
[\[\ce{K_{f(H_2O)}}\] = 1.86 K kg mol−1]
The degree of dissociation of Ca(NO3)2 in a dilute aqueous solution containing 7 g of the salt per 100 g of water at 100°C is 70%. If the vapour pressure of water at 100°C is 760 mm. The vapour pressure of the solution is ______ mm.
Consider the reaction
\[\begin{bmatrix}\begin{array}{cc}
\phantom{.......}\ce{CH3}\\
\phantom{....}|\\
\ce{CH3CH2CH2 - \overset{⊕}{N} - CH2CH3}\\
\phantom{....}|\\
\phantom{.......}\ce{CH3}
\end{array}\end{bmatrix}\]\[\ce{OH^- ->[Heat] ?}\]
Which of the following is formed in a major amount?
A molecule M associates in a given solvent according to the equation \[\ce{M <=> (M)_n}\]. For a certain concentration of M, the van't Hoff factor was found to be 0.9 and the fraction of associated molecules was 0.2. The value of n is ______.
When 19.5 g of F – CH2 – COOH (Molar mass = 78 g mol−1), is dissolved in 500 g of water, the depression in freezing point is observed to be 1°C. Calculate the degree of dissociation of F – CH2 – COOH.
[Given: Kf for water = 1.86 K kg mol−1]
Why is the value of van't Hoff factor for ethanoic acid in benzene close to 0.5?
Why is boiling point of 1 M NaCl solution more than that of 1 M glucose solution?
Calculate Van't Hoff factor for an aqueous solution of K3 [Fe(CN)6] if the degree of dissociation (α) is 0.852. What will be boiling point of this solution if its concentration is 1 molal? (Kb = 0.52 K kg/mol)