Advertisements
Advertisements
प्रश्न
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y
उत्तर
`2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]`
`[(6, 8),(10, 2x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]`
⇒ `[(6 + 1, 8 + y),(10 + 0, 2x + 1)] = [(z, 0),(10, 5)]`
⇒ `[(7, 8 + y),(10, 2x + 1)] = [(z, 0),(10, 5)]`
Comparing,
2x + 1 = 5
⇒ 2x = 5 – 1 = 4
∴ x = `(4)/(2)` = 2
8 + y = 0
⇒ y = –8
z = 7
Hence x = 2, y = –8, z = 7.
APPEARS IN
संबंधित प्रश्न
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
If A = `[(3, -5),(-4, 2)]` find A2 – 5A – 14I
Where I is unit matrix of order 2 x 2