मराठी

If a = 23 ✕ 3, B = 2 ✕ 3 ✕ 5, C = 3n ✕ 5 and Lcm (A, B, C) = 23 ✕ 32 ✕ 5, Then N = - Mathematics

Advertisements
Advertisements

प्रश्न

If a = 23 ✕ 3, = 2 ✕ 3 ✕ 5, c = 3n ✕ 5 and LCM (abc) = 23 ✕ 32 ✕ 5, then n =

पर्याय

  • 1

  • 2

  • 3

  • 4

MCQ

उत्तर

LCM (a,b,c)= `2^2xx3^2xx5` ……(I)

We have to find the value for n

Also

`a= 2^3xx3`

`b=2xx3xx5`

`c=3^nxx5`

We know that the while evaluating LCM, we take greater exponent of the prime numbers in the factorization of the number.

Therefore, by applying this rule and taking  ` n ≥ 1` we get the LCM as

LCM `(a,b,c)= 2^1xx3^nxx5` ……(II)

On comparing (I) and (II) sides, we get:

`2^3xx3^2xx5=2^3xx3^nxx5`

n=2

Hence the correct choice is (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.8 [पृष्ठ ६०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.8 | Q 13 | पृष्ठ ६०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×