मराठी

If a|a→| = 10, b|b→| = 2 and aba→.b→ = 12, then value of ab|a→×b→| is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.

पर्याय

  • 5

  • 10

  • 14

  • 16

MCQ
रिकाम्या जागा भरा

उत्तर

If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is 16.

Explanation:

Given that `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12

∴ `vec"a" . vec"b" = |vec"a"||vec"b"| cos theta`

⇒ 12 = `10 * 2 * cos theta`

⇒ `cos theta = 12/20 = 3/5`

∴ `sin theta = sqrt(1 - cos^2theta)`

⇒  `sin theta = sqrt(1 - (3/5)^2`

⇒ `sin theta = sqrt(1 - 9/25)`

⇒ `sin theta = sqrt(16/25)`

⇒ `sin theta = 4/5`

Now `|vec"a" xx vec"b"| = |vec"a"| |vec"b"| sin theta`

= `10 * 2 * 4/5`

= 16

shaalaa.com
Vectors Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise [पृष्ठ २१८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise | Q 27 | पृष्ठ २१८

संबंधित प्रश्‍न

Write the value of `vec a .(vecb xxveca)`


 

If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`

 

 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`


If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Find `veca.(vecbxxvecc), " if " veca=2hati+hatj+3hatk, vecb=-hati+2hatj+hatk  " and " vecc=3hati+hatj+2hatk`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `vec"a" + vec"b" and  vec"a" -vec"b" if  vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both"  vec"a" + vec"b" and vec"a" - vec"b"`.


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×