Advertisements
Advertisements
प्रश्न
Write the value of `vec a .(vecb xxveca)`
उत्तर
Let:
`vec a=a_1hati+a_2hatj+a_3hatk`
`vecb=b_1hati+b_2hatj+b_3hatk`
`therefore veca.(vecb xx veca)`
`=(a_1hati+a_2hatj+a_3hatk).[(b_1hati+b_2hatj+b_3hatk) xx (a_1hati+a_2hatj+a_3hatk)]`
`=(a_1hati+a_2hatj+a_3hatk).[(b_2a_3-b_3a_2)hati-(b_1a_3-b_3a_1)hatj+(b_1a_2-b_2a_1)hatk]`
`=(b_2a_3-b_3a_2)a_1-(b_1a_3-b_3a_1)a_2+(b_1a_2-b_2a_1)a_3`
`=a_1a_3b_2−a_1a_2b_3−a_2a_3b_1+a_1a_2b_3+a_2a_3b_1−a_1a_3b_2`
Alternate Method:
`vec b xx vec a` is a vector perpendicular to both `veca and vecb`
`∴ vecb xx veca ⊥ veca` and `vecb xx veca ⊥ vecb`
⇒ `veca . (vecb xx veca)=0`
APPEARS IN
संबंधित प्रश्न
If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.
If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`
If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`
Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.
if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`
If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`
Find the angle between the vectors `vec"a" + vec"b" and vec"a" -vec"b" if vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both" vec"a" + vec"b" and vec"a" - vec"b"`.
Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.
If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?
Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).
Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.
Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.
The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.
If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.
The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.
If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.