Advertisements
Advertisements
प्रश्न
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]
उत्तर
a = a − b + b
So, an = [a − b +b]n
= [(a − b) + b]n
= nC0 (a − b)n + nC1 (a − b)n−1b1 + nC2 (a − b)n−2b2 + ....... + nCn−1 (a − b)bn−1 + nCn (bn)
⇒ an − bn = (a − b)n + nC1 (a − b)n−1b + nC2 (a − b)n−2b2 + ....... + nCn−1 (a − b)bn−1
= (a − b) [(a − b)n−1 + nC1 (a − b)n−2b + nC2 (a − b)n−3b2 + ...... + nCn−1 bn−1]
= (a – b)[an integer]
⇒ an – bn is divisible by (a – b)
APPEARS IN
संबंधित प्रश्न
Evaluate the following using binomial theorem:
(101)4
Expand the following by using binomial theorem.
`(x + 1/y)^7`
Find the middle terms in the expansion of
`(x + 1/x)^11`
Find the middle terms in the expansion of
`(3x + x^2/2)^8`
Find the term independent of x in the expansion of
`(2x^2 + 1/x)^12`
The middle term in the expansion of `(x + 1/x)^10` is
The last term in the expansion of (3 + √2 )8 is:
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Compute 1024
Compute 994
Compute 97
Using binomial theorem, indicate which of the following two number is larger: `(1.01)^(1000000)`, 10
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
Find the last two digits of the number 3600
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal
Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`
Choose the correct alternative:
The remainder when 3815 is divided by 13 is