Advertisements
Advertisements
प्रश्न
Find the term independent of x in the expansion of
`(2x^2 + 1/x)^12`
उत्तर
`(2x^2 + 1/x)^12` Compare with the (x + a)n.
Here x is 2x2, a is `1/x`, n = 12.
Let the independent term of x occurs in the general term.
tr+1 = nCr xn-r ar
`"t"_(r+1) = 12"C"_r (2x^2)^(12-r) (1/x)^r = 12"C"_r 2^(12-r) x^(2(12-r)) x^-r`
= 12Cr 212-r x24-2r x-r
`= 12"C"_r 12^(12-r) x^(24-3r)`
Independent term occurs only when x power is zero
24 – 3r = 0
24 = 3r
r = 8
Put r = 8 in (1) we get the independent term as
= 12C8 212-8 x0
= 12C4 × 24 × 1
= 7920
APPEARS IN
संबंधित प्रश्न
Expand the following by using binomial theorem.
(2a – 3b)4
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x^2 - 2/(3x))^9`
Expand `(2x^2 - 3/x)^3`
Compute 1024
Compute 994
Find the coefficient of x4 in the expansion `(1 + x^3)^50 (x^2 + 1/x)^5`
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal
If a and b are distinct integers, prove that a − b is a factor of an − bn, whenever n is a positive integer. [Hint: write an = (a − b + b)n and expaand]
Prove that `"C"_0^2 + "C"_1^2 + "C"_2^2 + ... + "C"_"n"^2 = (2"n"!)/("n"!)^2`