Advertisements
Advertisements
प्रश्न
If A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B
उत्तर
Given
A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B
Now, A2 = A x A
= `[(3, x),(0, 1)] xx [(3, x),(0, 1)]`
= `[(9, 3x + x),(0, 1)]`
= `[(9, 4x),(0, 1)]`
We have A2 = B
Two matrices are equal if each and every corresponding element is equal.
Thus `[(9, 4x),(0, 1)] = [(9, 16),(0, -y)]`
⇒ 4x = 16 and 1 = –y
⇒ x = 4 and y = –1.
APPEARS IN
संबंधित प्रश्न
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is