मराठी

If A≠B≠0, Prove that the Points (A, A2), (B, B2) (0, 0) Will Not Be Collinear - Mathematics

Advertisements
Advertisements

प्रश्न

If a≠b≠0, prove that the points (a, a2), (b, b2) (0, 0) will not be collinear.

थोडक्यात उत्तर

उत्तर

Let A(a, a2), B(b, b2) and C(0, 0) be the coordinates of the given points.

We know that the area of triangle having vertices (x1, y1), (x2, y2) and (x3, y3) is ∣∣`1/2`[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]∣∣ square units.

So,

Area of ∆ABC

`= |1/2|a(b^2 - 0) + b(0 - a^2) + 0(a^2 -  b^2)||`

`=|1/2(ab^2 - a^2b)|`

`= 1/2|ab(b -a)|`

`!= 0     (∵ a!= b != 0)`

Since the area of the triangle formed by the points (a, a2), (b, b2) and (0, 0) is not zero, so the given points are not collinear.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.5 [पृष्ठ ५४]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×