Advertisements
Advertisements
प्रश्न
If all three zeroes of a cubic polynomial x3 + ax2 – bx + c are positive, then at least one of a, b and c is non-negative.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Let α, β and γ be the three zeroes of cubic polynomial x3 + ax2 – bx + c.
Then, product of zeroes = `(-("Constant term"))/("Coefficient of" x^3)`
`\implies` αβγ = `c/1`
`\implies` αβγ = `-c` ......(i)
Given that, all three zeroes are positive.
So, the product of all three zeroes is also positive.
i.e., αβγ > 0
`\implies` – c > 0 .....[From (i)]
`\implies` c < 0
Now, sum of the zeroes = α + β + γ
= `(-("Coefficient of" x^2))/("Coefficient of" x^3)`
`\implies` α + β + γ = `a/1 = -a`
But α, β and γ all are positive.
Thus, their sum is also positive.
So, α + β + γ > 0
`\implies` – a > 0
`\implies` a < 0
And sum of the product of the zeroes taken two at a time
= `("Coefficient of" x)/("Coefficient of" x^3)`
= `(-b)/1`
`\implies` αβ + βγ + γα = `- b`
∵ αβ + βγ + αγ > 0
`\implies` `-b > 0`
`\implies` b < 0
∴ All the coefficients a, b and c are negative.
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
6x2 – 3 – 7x
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
Find the quadratic polynomial, sum of whose zeroes is `sqrt2` and their product is `(1/3)`.
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.
If the sum of the roots is –p and the product of the roots is `-1/"p"`, then the quadratic polynomial is:
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
4x2 – 3x – 1
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`