मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.

बेरीज

उत्तर

Given, bYX = − 0.6, bXY = − 0.216

∴ r = `+-sqrt("b"_"XY" * "b"_"YX")`

`= +- sqrt(- 0.216 * (- 0.6)) = +- sqrt(0.1296)`

∴ r = ± 0.36

Since bXY and bYX are negative,

r is also negative.

∴ r = - 0.36

∴ X and Y negatively correlated.

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Miscellaneous Exercise 3 [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Linear Regression
Miscellaneous Exercise 3 | Q 4.12 | पृष्ठ ५४

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


State whether the following statement is True or False: 

If u = x – a and v = y – b then bxy = buv 


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


byx is the ______ of regression line of y on x


The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


If byx > 1 then bxy is _______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×