Advertisements
Advertisements
प्रश्न
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
उत्तर
Given, `bar x = 85, bar y = 90, sigma_"X" = 5, sigma_"Y" = 6`, r =0.6
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 6/5 = 0.72`
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.6 xx 5/6 = 0.5`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 90) = 0.72 (X - 85)
Y - 90 = 0.72 X - 61.2
Y = 0.72X - 61.2 + 90
Y = 28.8 + 0.72 X ....(i)
The regression equation of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 85) = 0.5(Y - 90)
X - 85 = 0.5 Y - 45
X = 0.5 Y - 45 + 85
X = 40 + 0.5Y ....(ii)
For Y = 100, from equation (ii) we get
X = 40 + 0.5(100) = 40 + 50 = 90
∴ The production is 90 when demand is 100.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
You are given the following information about advertising expenditure and sales.
Advertisement expenditure (₹ in lakh) (X) |
Sales (₹ in lakh) (Y) | |
Arithmetic Mean | 10 | 90 |
Standard Mean | 3 | 12 |
Correlation coefficient between X and Y is 0.8
- Obtain the two regression equations.
- What is the likely sales when the advertising budget is ₹ 15 lakh?
- What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
bxy and byx are ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
Corr(x, x) = 0
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
bxy . byx = ______.