मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

For a certain bivariate data And r = 0.5. Estimate y when x = 10 and estimate x when y = 16 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16

बेरीज

उत्तर

Given, `bar x = 25, bar y = 20, sigma_"X" = 4, sigma_"Y" = 3`, r =0.5

`"b"_"YX" = "r" sigma_y/sigma_x = (0.5) 3/4 = 0.375`

`"b"_"XY" = "r" sigma_y/sigma_x = (0.5) 4/3 = 0.667`

The regression equation of Y on X is

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

(Y - 20) = 0.375 (X - 25)

Y - 20 = - 9.375 + 0.375 X

Y = 10.625 + 0.375 X

For X = 10

Y = 10.625 +0.375 × 10 = 10.625 + 3.75 = 14.375

The regression equation of X on Y is

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

(X - 25) = 0.667(Y - 20)

X - 25 = - 13.34 + 0.667 Y

X = 11.66 + 0.667 Y

For Y = 16,

X = 11.66 + 0.667(16) = 11.66 + 10.672 = 22.332

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.2 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्‍न

You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


byx is the ______ of regression line of y on x


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


bxy . byx = ______.


If byx > 1 then bxy is _______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×