Advertisements
Advertisements
प्रश्न
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
उत्तर
Given, `bar x = 25, bar y = 20, sigma_"X" = 4, sigma_"Y" = 3`, r =0.5
`"b"_"YX" = "r" sigma_y/sigma_x = (0.5) 3/4 = 0.375`
`"b"_"XY" = "r" sigma_y/sigma_x = (0.5) 4/3 = 0.667`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 20) = 0.375 (X - 25)
Y - 20 = - 9.375 + 0.375 X
Y = 10.625 + 0.375 X
For X = 10
Y = 10.625 +0.375 × 10 = 10.625 + 3.75 = 14.375
The regression equation of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 25) = 0.667(Y - 20)
X - 25 = - 13.34 + 0.667 Y
X = 11.66 + 0.667 Y
For Y = 16,
X = 11.66 + 0.667(16) = 11.66 + 10.672 = 22.332
APPEARS IN
संबंधित प्रश्न
You are given the following information about advertising expenditure and sales.
Advertisement expenditure (₹ in lakh) (X) |
Sales (₹ in lakh) (Y) | |
Arithmetic Mean | 10 | 90 |
Standard Mean | 3 | 12 |
Correlation coefficient between X and Y is 0.8
- Obtain the two regression equations.
- What is the likely sales when the advertising budget is ₹ 15 lakh?
- What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
byx is the ______ of regression line of y on x
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
bxy . byx = ______.
If byx > 1 then bxy is _______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.