Advertisements
Advertisements
प्रश्न
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
उत्तर
Given, `bar x = 25, bar y = 20, sigma_"X" = 4, sigma_"Y" = 3`, r =0.5
`"b"_"YX" = "r" sigma_y/sigma_x = (0.5) 3/4 = 0.375`
`"b"_"XY" = "r" sigma_y/sigma_x = (0.5) 4/3 = 0.667`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 20) = 0.375 (X - 25)
Y - 20 = - 9.375 + 0.375 X
Y = 10.625 + 0.375 X
For X = 10
Y = 10.625 +0.375 × 10 = 10.625 + 3.75 = 14.375
The regression equation of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 25) = 0.667(Y - 20)
X - 25 = - 13.34 + 0.667 Y
X = 11.66 + 0.667 Y
For Y = 16,
X = 11.66 + 0.667(16) = 11.66 + 10.672 = 22.332
APPEARS IN
संबंधित प्रश्न
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
Choose the correct alternative:
bxy and byx are ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
The following data is not consistent: byx + bxy =1.3 and r = 0.75
Corr(x, x) = 1
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
The geometric mean of negative regression coefficients is ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
If byx > 1 then bxy is _______.
|bxy + byz| ≥ ______.