Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
विकल्प
True
False
उत्तर
False
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Cov(x, x) = Variance of x
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
The value of product moment correlation coefficient between x and x is ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
bxy . byx = ______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.