Advertisements
Advertisements
प्रश्न
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
उत्तर
Given, the two regression equations are
5x - 6y + 90 = 0
i.e., 5x - 6y = - 90 ...(i)
and 15x - 8y - 130 = 0
i.e., 15x - 8y = 130 ...(ii)
By (i) × 3 – (ii), we get
15x - 18y = - 270
15x - 8y = 130
- + -
- 10y = - 400
∴ y = 40
Substituting y = 40 in (i), we get
5x - 6(40) = –90
∴ 5x - 240 = - 90
∴ 5x = - 90 + 240 = 150
∴ x = 30
Since the point of intersection of two regression lines is `(bar x, bar y)`,
∴ `bar x` = 30 and `bar y` = 40
Now, let 5x – 6y + 90 = 0 be the regression equation of Y on X.
∴ The equation becomes 6Y = 5X + 90
i.e., Y = `5/6 "X" + 90/6`
Comparing it with Y = bYX X + a, we get
∴ `"b"_"YX" = 5/6`
Now, other equation 15x – 8y – 130 = 0 be the regression equation of X on Y.
∴ The equation becomes 15X = 8Y + 130
i.e., X = `8/15 "Y" + 130/15`
Comparing it with X = bXY Y + a', we get
∴ `"b"_"XY" = 8/15`
∴ r = `+-sqrt("b"_"XY" * "b"_"YX")`
`= +- sqrt(8/15 * 5/6) = +- sqrt(4/9) = +- 2/3`
Since bYX and bXY both are positive,
r is positive.
∴ r = `2/3`
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
The following data is not consistent: byx + bxy =1.3 and r = 0.75
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The value of product moment correlation coefficient between x and x is ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
If byx > 1 then bxy is _______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.