हिंदी

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find x¯,y¯, r. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.

योग

उत्तर

Given, the two regression equations are

5x - 6y + 90 = 0

i.e., 5x - 6y = - 90      ...(i)

and 15x - 8y - 130 = 0

i.e., 15x - 8y = 130      ...(ii)

By (i) × 3 – (ii), we get

15x - 18y = - 270

15x - 8y =  130
-       +       -     
- 10y = - 400

∴ y = 40

Substituting y = 40 in (i), we get

5x - 6(40) = –90

∴ 5x - 240 = - 90

∴ 5x = - 90 + 240 = 150

∴ x = 30

Since the point of intersection of two regression lines is `(bar x, bar y)`,

∴ `bar x` = 30  and  `bar y` = 40

Now, let 5x – 6y + 90 = 0 be the regression equation of Y on X.

∴ The equation becomes 6Y = 5X + 90

i.e., Y = `5/6 "X" + 90/6`

Comparing it with Y = bYX X + a, we get

∴ `"b"_"YX" = 5/6`

Now, other equation 15x – 8y – 130 = 0 be the regression equation of X on Y.

∴ The equation becomes 15X = 8Y + 130

i.e., X = `8/15 "Y" + 130/15`

Comparing it with X = bXY Y + a', we get

∴ `"b"_"XY" = 8/15`

∴ r = `+-sqrt("b"_"XY" * "b"_"YX")`

`= +- sqrt(8/15 * 5/6) = +- sqrt(4/9) = +- 2/3`

Since bYX and bXY both are positive,

r is positive.

∴ r = `2/3`

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.3 | Q 10 | पृष्ठ ५०

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


The following data is not consistent: byx + bxy =1.3 and r = 0.75


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The value of product moment correlation coefficient between x and x is ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


Mean of x = 25

Mean of y = 20

`sigma_x` = 4

`sigma_y` = 3

r = 0.5

byx = `square`

bxy = `square`

when x = 10,

`y - square = square (10 - square)`

∴ y = `square`


If byx > 1 then bxy is _______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×