हिंदी

Given the following information about the production and demand of a commodity. Obtain the two regression lines: Production(X) Demand(Y) Mean 85 90 Variance 25 36 Coefficient of correlation between - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.

योग

उत्तर

Given, `bar(x)` = 85, `bar(y)` = 90, `sigma_x^2` = 25, `sigma_y^2` = 36, r = 0.6

∴ `sigma_x` = 5, `sigma_y` = 6

byx = `"r" sigma_y/sigma_x = 0.6 xx 6/5` = 0.72

bxy = `"r" sigma_x/sigma_y = 0.6 xx 5/6` = 0.5

The regression equation of Y on X is given by `("Y" - bary) = "b"_(xy)  ("X" - barx)`

(Y – 90) = 0.72(X – 85)

Y – 90 = 0.72X – 61.2

Y = 0.72X – 61.2 + 90

Y = 28.8 + 0.72X     ......(i)

The regression equation of X on Y is given by `("X" - barx) = "b"_(xy)  ("Y" - bary)`

(X – 85) = 0.5(Y – 90)

X – 85 = 0.5Y – 45

X = 0.5Y – 45 + 85

X = 40 + 05Y     ......(ii)

For X = 100, from equation (i) we get

Y = 28.8 + 0.72(100)

= 28.8 + 72

= 100.8

∴ The production is 90 when demand is 100.

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Linear Regression - Q.4

संबंधित प्रश्न

From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

Choose the correct alternative:

|byx + bxy| ≥ ______


The following data is not consistent: byx + bxy =1.3 and r = 0.75


byx is the ______ of regression line of y on x


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


If byx > 1 then bxy is _______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×