हिंदी

Mean of x = 53 Mean of y = 28 Regression coefficient of y on x = – 1.2 Regression coefficient of x on y = – 0.3 a. r = □ b. When x = 50, y-□=□(50-□) ∴ y = □ c. When y = 25, x-□=□(25-□) ∴ x = □ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`

रिक्त स्थान भरें
योग

उत्तर

Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `+- sqrt("b"_(xy)*"b"_(yx))`

= `+- sqrt((-0.3)(-1.2))`

= `+-  0.6`

Since bYX and bXY both are – negative,

r is also negative.

∴ r = – 0.6

b.  When x = 50,

`(y - bary) = "b"_(yx)  (x- barx)`

∴ `(y - 28) = - 1.2 (50 - 53)`

∴ y = 28 – 60 + 63.6

∴ y = 31.6

c. When y = 25,

`(x - 53) = - 0.3 (25 - 28)`

∴ X = 53 – 7.5 + 8.4

∴ X = 53.9

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Linear Regression - Q.5

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


Choose the correct alternative:

If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False:

Cov(x, x) = Variance of x


State whether the following statement is True or False:

Regression coefficient of x on y is the slope of regression line of x on y


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×