Advertisements
Advertisements
प्रश्न
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
उत्तर
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `+- sqrt("b"_(xy)*"b"_(yx))`
= `+- sqrt((-0.3)(-1.2))`
= `+- 0.6`
Since bYX and bXY both are – negative,
r is also negative.
∴ r = – 0.6
b. When x = 50,
`(y - bary) = "b"_(yx) (x- barx)`
∴ `(y - 28) = - 1.2 (50 - 53)`
∴ y = 28 – 60 + 63.6
∴ y = 31.6
c. When y = 25,
`(x - 53) = - 0.3 (25 - 28)`
∴ X = 53 – 7.5 + 8.4
∴ X = 53.9
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
The following data is not consistent: byx + bxy =1.3 and r = 0.75
State whether the following statement is True or False:
Cov(x, x) = Variance of x
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient