Advertisements
Advertisements
प्रश्न
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
उत्तर
Given, X = Height (in inches), Y = weight (in Kg)
The equation of regression are
4y - 15x + 500 = 0
i.e., –15x + 4y = – 500 …(i)
and 20x – 3y – 900 = 0
i.e., 20x – 3y = 900 …(ii)
By 3 × (i) + 4 × (ii), we get
- 45x + 12y = - 1500
+ 80x - 12y = 3600
35x = 2100
∴ x = 60
Substituting x = 60 in (i), we get
–15(60) + 4y = –500
∴ 4y = 900 – 500
∴ y = 100
Since the point of intersection of two regression lines is `bar x, bar y`,
`bar x` = mean height of the group = 60 inches, and
`bar y` = mean weight of the group = 100 kg.
Let 4y – 15x + 500 = 0 be the regression equation of Y on X.
∴ The equation becomes 4y = 15x – 500
i.e., Y = `15/4"X" - 500/4` ...(i)
Comparing it with Y = bYX X + a, we get
∴ `"b"_"YX" = 15/4`
∴ Now, other equation 20x – 3y – 900 = 0 be the regression equation of X on Y
∴The equation becomes 20x – 3y – 900 = 0
i.e., 20x = 3y + 900
X = `3/20"Y" + 900/20`
Comparing it with X = bXY Y + a',
∴ `"b"_"XY" = 3/20`
Now, `"b"_"YX" * "b"_"XY" = 15/4 * 3/20 = 0.5625`
i.e., bXY . bYX < 1
∴ Assumption of regression equations is true.
Now, substituting x = 70 in (i) we get
y = `15/4 xx 70 - 500/4 = (1050 - 500)/4 = 550/4 = 137.5`
∴ Weight of girl having height 70 inches is 137.5 kg
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
You are given the following information about advertising expenditure and sales.
Advertisement expenditure (₹ in lakh) (X) |
Sales (₹ in lakh) (Y) | |
Arithmetic Mean | 10 | 90 |
Standard Mean | 3 | 12 |
Correlation coefficient between X and Y is 0.8
- Obtain the two regression equations.
- What is the likely sales when the advertising budget is ₹ 15 lakh?
- What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
The following data is not consistent: byx + bxy =1.3 and r = 0.75
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Cov(x, x) = Variance of x
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170