हिंदी

For bivariate data. x¯=53,y¯=28,bYX=-1.2,bXY=-0.3 Find estimate of Y for X = 50. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.

योग

उत्तर

Here, `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3`

The regression equation of Y on X is

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

∴ (Y - 28) = (- 1.2)(X - 53)

∴ Y - 28 = - 1.2 X + 63.6

∴ Y = - 1.2 X + 63.6 + 28

∴ Y = - 1.2 X + 91.6

For X = 50

∴ Y = - 1.2(50) + 91.6 = - 60 + 91.6 = 31.6

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.2 [पृष्ठ ४७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.2 | Q 1.2 | पृष्ठ ४७

संबंधित प्रश्न

Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.


The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

bxy and byx are ______


State whether the following statement is True or False: 

If u = x – a and v = y – b then bxy = buv 


State whether the following statement is True or False:

Cov(x, x) = Variance of x


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


The value of product moment correlation coefficient between x and x is ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×