Advertisements
Advertisements
Question
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
Solution
Here, `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
∴ (Y - 28) = (- 1.2)(X - 53)
∴ Y - 28 = - 1.2 X + 63.6
∴ Y = - 1.2 X + 63.6 + 28
∴ Y = - 1.2 X + 91.6
For X = 50
∴ Y = - 1.2(50) + 91.6 = - 60 + 91.6 = 31.6
APPEARS IN
RELATED QUESTIONS
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
bxy and byx are ______
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The geometric mean of negative regression coefficients is ______
byx is the ______ of regression line of y on x
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
If byx > 1 then bxy is _______.