English

For bivariate data. x¯=53,y¯=28,bYX=-1.2,bXY=-0.3 Find estimate of X for Y = 25. - Mathematics and Statistics

Advertisements
Advertisements

Question

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.

Sum

Solution

Here, `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3`

The regression equation of X on Y is

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

∴ (X - 53) = (- 0.3)(Y - 28)

∴ X - 53 = - 0.3 Y + 8.4

∴ X = - 0.3 Y + 8.4 + 53

∴ X = - 0.3 Y + 61.4

For Y = 25

∴ X = - 0.3(25) + 61.4 = - 7.5 + 61.4 = 53.9

shaalaa.com
Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 3: Linear Regression - Exercise 3.2 [Page 47]

APPEARS IN

RELATED QUESTIONS

From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

Choose the correct alternative:

|byx + bxy| ≥ ______


Choose the correct alternative:

bxy and byx are ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False:

Corr(x, x) = 0


The geometric mean of negative regression coefficients is ______


bxy . byx = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×