Advertisements
Advertisements
Question
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Solution
Given, bYX + bXY = 1.30, r = 0.75
Consider, `("b"_"YX" + "b"_"XY")/2 = 1.30/2 = 0.65`
∴ `("b"_"YX" + "b"_"XY")/2 < "r"`
But, for consistent data `|("b"_"YX" + "b"_"XY")/2|` >|r|
∴ Given data is inconsistent.
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
bxy and byx are ______
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Corr(x, x) = 0
Corr(x, x) = 1
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The geometric mean of negative regression coefficients is ______
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`