Advertisements
Advertisements
Question
Corr(x, x) = 1
Options
True
False
Solution
This statement is True.
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
State whether the following statement is True or False:
Cov(x, x) = Variance of x
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
bxy . byx = ______.
|bxy + byz| ≥ ______.