Advertisements
Advertisements
Question
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
Solution
Given, `bar(x)` = 85, `bar(y)` = 90, `sigma_x^2` = 25, `sigma_y^2` = 36, r = 0.6
∴ `sigma_x` = 5, `sigma_y` = 6
byx = `"r" sigma_y/sigma_x = 0.6 xx 6/5` = 0.72
bxy = `"r" sigma_x/sigma_y = 0.6 xx 5/6` = 0.5
The regression equation of Y on X is given by `("Y" - bary) = "b"_(xy) ("X" - barx)`
(Y – 90) = 0.72(X – 85)
Y – 90 = 0.72X – 61.2
Y = 0.72X – 61.2 + 90
Y = 28.8 + 0.72X ......(i)
The regression equation of X on Y is given by `("X" - barx) = "b"_(xy) ("Y" - bary)`
(X – 85) = 0.5(Y – 90)
X – 85 = 0.5Y – 45
X = 0.5Y – 45 + 85
X = 40 + 05Y ......(ii)
For X = 100, from equation (i) we get
Y = 28.8 + 0.72(100)
= 28.8 + 72
= 100.8
∴ The production is 90 when demand is 100.
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The value of product moment correlation coefficient between x and x is ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
byx is the ______ of regression line of y on x
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
If byx > 1 then bxy is _______.