Advertisements
Advertisements
Question
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
Solution
Given, `bar x = 25, bar y = 20, sigma_"X" = 4, sigma_"Y" = 3`, r =0.5
`"b"_"YX" = "r" sigma_y/sigma_x = (0.5) 3/4 = 0.375`
`"b"_"XY" = "r" sigma_y/sigma_x = (0.5) 4/3 = 0.667`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 20) = 0.375 (X - 25)
Y - 20 = - 9.375 + 0.375 X
Y = 10.625 + 0.375 X
For X = 10
Y = 10.625 +0.375 × 10 = 10.625 + 3.75 = 14.375
The regression equation of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 25) = 0.667(Y - 20)
X - 25 = - 13.34 + 0.667 Y
X = 11.66 + 0.667 Y
For Y = 16,
X = 11.66 + 0.667(16) = 11.66 + 10.672 = 22.332
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find
- Mean values of X and Y
- Standard deviation of Y
- Coefficient of correlation between X and Y.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
Corr(x, x) = 1
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`