English

For a certain bivariate data And r = 0.5. Estimate y when x = 10 and estimate x when y = 16 - Mathematics and Statistics

Advertisements
Advertisements

Question

For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16

Sum

Solution

Given, `bar x = 25, bar y = 20, sigma_"X" = 4, sigma_"Y" = 3`, r =0.5

`"b"_"YX" = "r" sigma_y/sigma_x = (0.5) 3/4 = 0.375`

`"b"_"XY" = "r" sigma_y/sigma_x = (0.5) 4/3 = 0.667`

The regression equation of Y on X is

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

(Y - 20) = 0.375 (X - 25)

Y - 20 = - 9.375 + 0.375 X

Y = 10.625 + 0.375 X

For X = 10

Y = 10.625 +0.375 × 10 = 10.625 + 3.75 = 14.375

The regression equation of X on Y is

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

(X - 25) = 0.667(Y - 20)

X - 25 = - 13.34 + 0.667 Y

X = 11.66 + 0.667 Y

For Y = 16,

X = 11.66 + 0.667(16) = 11.66 + 10.672 = 22.332

shaalaa.com
Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 3: Linear Regression - Exercise 3.2 [Page 48]

RELATED QUESTIONS

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


Corr(x, x) = 1


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×