Advertisements
Advertisements
Question
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
Solution
Given, `sigma_"X"^2 = 9`
∴ σX = 3
(i) The two regression equations are
8x - 10y + 66 = 0
i.e., 8x - 10y = - 66 ...(i)
and 40x - 18y = 214 ....(ii)
By 5 × (i) - (ii), we get
40x - 50y = - 330
40x - 18y = 214
(-) (+) (-)
- 32y = - 544
∴ y = `544/32 = 17`
Substituting y = 17 in (i), we get
8x - 10 × 17 = - 66
∴ 8x - 170 = - 66
∴ 8x = - 66 + 170
∴ 8x = 104
∴ x = `104/8 = 13`
Since the point of intersection of two regression lines is `(bar x, bar y)`,
`bar x` = mean value of X = 13, and
`bar y` = mean value of X = 17.
(ii) Let 8x - 10y + 66 = 0 be the regression equation of Y on X.
∴ The equation becomes 10Y = 8X + 66
i.e., Y = `8/10 "X" + 66/10`
i.e., Y = `4/5 "X" + 33/5`
Comparing it with Y = bYX X + a, we get
`"b"_"YX" = 4/5`
Now, the other equation, i.e., 40x - 18y = 214 is the regression equation of X on Y.
∴ The equation becomes X = `18/40 "Y" + 214/40`
i.e., X = `9/20 "Y" + 107/20`
Comparing it with X = bXY Y + a', we get
`"b"_"XY" = 9/20`
r = `+- sqrt("b"_"XY" * "b"_"YX")`
∴ r = `+- sqrt(9/20 xx 4/5) = +- sqrt(9/25) = +- 3/5 = +- 0.6`
Since bYX and bXY both are positive,
r is also positive.
∴ r = 0.6
(iii) `"b"_"YX" = "r" sigma_"Y"/sigma_"X"`
∴ `4/5 = 0.6 xx sigma_"Y"/3`
∴ `4/5 = sigma_"Y"/5`
∴ `sigma_"Y" = 4`
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find
- Mean values of X and Y
- Standard deviation of Y
- Coefficient of correlation between X and Y.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
Corr(x, x) = 1
State whether the following statement is True or False:
Cov(x, x) = Variance of x
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
|bxy + byx| ≥ ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The geometric mean of negative regression coefficients is ______
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)