English

For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0.  The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.

Sum

Solution

Given, n = 50, X = marks in Statistics,

Y = marks in Accountancy,

Regression equation of X on Y is

3y – 5x + 180 = 0,

`bar y = 44,  sigma_X^2 = 9/16 sigma_Y^2`

Now, 3y – 5x + 180 = 0 is the regression equation of X on Y.

∴ The equation becomes 5X = 3Y + 180

i.e., X = `3/5` Y + `180/5`

Comparing it with X = bXY Y + a', we get

`b_(XY) = 3/5, a = 180/5` = 36

a = `barx - b_(XY)  bary`

∴ 36 = `bar x - 3/5 xx 44`

∴ 36 = `bar x` – 26.4

∴ `bar x` = 36 + 26.4 = 62.4

Also, `sigma_X^2 = 9/16 sigma_Y^2`

∴ `sigma_X^2/sigma_Y^2 = 9/16`

∴ `sigma_X/sigma_Y = 3/4`

`b_(XY) = r xx sigma_X/sigma_Y`

∴ `3/5 = r xx 3/4`

∴ `3/5 xx 4/3` = r

∴ r = `4/5` = 0.8

∴ Mean marks in statistics `(barx)` are 62.4 and correlation coefficient (r) between marks in the two subjects is 0.8.

shaalaa.com
Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 3: Linear Regression - Exercise 3.3 [Page 50]

RELATED QUESTIONS

From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

Choose the correct alternative:

If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______


Choose the correct alternative:

|byx + bxy| ≥ ______


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


|bxy + byx| ≥ ______


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


Mean of x = 25

Mean of y = 20

`sigma_x` = 4

`sigma_y` = 3

r = 0.5

byx = `square`

bxy = `square`

when x = 10,

`y - square = square (10 - square)`

∴ y = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×