Advertisements
Advertisements
Question
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
Solution
X = Expenditure on accommodation.
Y = Expenditure on food and entertainment
Given, ∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6, n = 50
∴ `bar x = (sum x)/"n" = 8500/50 = 170`
`bar y = (sum y)/"n" = 9600/50 = 192`
Now, `"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 20/60 = 0.2`
Also, `"a" = bar y - "b"_"YX" bar x`
= 192 - 0.2 × 170 = 192 - 34 = 158
The regression equation of Y on X is
Y = a + bYX X
∴ Y = 158 + 0.2 X
For X = 200,
Y = 158 + 0.2 × 200 = 158 + 40 = 198
∴ The expenditure on food and entertainment is
₹ 198 when expenditure on accommodation is ₹ 200.
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find
- Mean values of X and Y
- Standard deviation of Y
- Coefficient of correlation between X and Y.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Corr(x, x) = 0
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.