Advertisements
Advertisements
Question
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
Solution
Let X = Sales,
Y = Advertisement expenditure
Given, `bar x = 40, bar y = 6, sigma_"X" = 10, sigma_"Y" = 1.5`, r = 0.9
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.9 xx 10/1.5 = 6`
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.9 xx 1.5/10 = 0.135`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
∴ (Y - 6) = 0.135(X - 40)
∴ Y - 6 = 0.135X - 5.4
∴ Y = 0.135X - 5.4 + 6
∴ Y = 0.135X + 0.6
For X = 60,
Y = 0.135(60) + 0.6 = 8.1 + 0.6 = 8.7
∴ The advertisement expenditure should be ₹ 8.7 crores if the firm proposes a sales target ₹ 60 crores
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Choose the correct alternative:
|byx + bxy| ≥ ______
The following data is not consistent: byx + bxy =1.3 and r = 0.75
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
The geometric mean of negative regression coefficients is ______
The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
If byx > 1 then bxy is _______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.