English

The equations of two regression lines are2x + 3y − 6 = 0and 2x + 2y − 12 = 0 Find Correlation coefficient σXσY - Mathematics and Statistics

Advertisements
Advertisements

Question

The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`
Sum

Solution

The given regression equations are
2x + 3y – 6 = 0 and 3x + 2y − 12 = 0

(i) 2x + 3y = 6

3y = – 2x + 6

`y = (– 2)/3x + 2`

`b_( yx)  = (-2)/3`

3x + 2y = 12

3x = – 2y = 12

`x = (-2)/3y + 4`

`b_(xy) = (-2)/3`

`b_( yx).b_(xy) = (-2)/3 xx (-2)/3 = 4/9 ∈ [0, 1]`

∴ Our assumption is correct.

∴ `r^2 = b_( yx).b_(xy)`

`r^2 = 4/9`

`r = ±2/3`

Since `b_( yx)` and `b_(xy)` are negative ∴ r =`(-2)/3`

(ii) `b_(xy) = (r . sigma_y)/sigma_x`

`(-2)/3 = (-2)/3 . sigma_x/sigma_y`

∴ `sigma_x/sigma_y = 1`

shaalaa.com
Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 3: Linear Regression - Exercise 3.3 [Page 50]

RELATED QUESTIONS

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

bxy and byx are ______


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


|bxy + byz| ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×