Advertisements
Advertisements
Question
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
Solution
Given, `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2.
`"a" = bar y - "b"_"YX" bar x`
∴ a = 28 - (- 1.5)(53) = 28 + 79.5 = 107.5
Now, the regression equation Y on X is
Y = a + bYX X
i.e., Y = 107.5 + (- 1.5)X
i.e., Y = 107.5 - 1.5 X
When X = 50, we get
Y = 107.5 - 1.5 × 50 = 107.5 - 75 = 32.5
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
- `bar x and bar y`
- bYX and bXY
- If var (Y) = 36, obtain var (X)
- r
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
Choose the correct alternative:
bxy and byx are ______
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
The following data is not consistent: byx + bxy =1.3 and r = 0.75
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
The geometric mean of negative regression coefficients is ______
byx is the ______ of regression line of y on x
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
|bxy + byz| ≥ ______.