Advertisements
Advertisements
Question
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
Options
True
False
Solution
False
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
- `bar x and bar y`
- bYX and bXY
- If var (Y) = 36, obtain var (X)
- r
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
The following data is not consistent: byx + bxy =1.3 and r = 0.75
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Corr(x, x) = 0
State whether the following statement is True or False:
Cov(x, x) = Variance of x
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The value of product moment correlation coefficient between x and x is ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
|bxy + byz| ≥ ______.